微分方程建模分析与数值模拟伏羲团队简介
项目名称:微分方程建模分析与数值模拟
负责人:丁恒飞,教授,博士,甘肃天水人,中共党员,必赢教授。2010年入选437必赢会员中心“青蓝”人才工程,2014年7月毕业于上海大学计算数学专业,获理学博士学位。2021年天水市“园丁奖”获得者,2022年被评为“天水市最美科技工作者”。在Journal of Computational Physics,Fractional Calculus and Applied Analysis,Journal of Scientific Computing等SCI、EI收录国际期刊上发表学术论文40余篇。
参与人: 沈永红,梁茂林,贾金平,王三福,黄建文,高忠社,田俊红,杨亚芳,张玉新。其中教授3人,副教授5人,讲师2人;具有博士学位5人,硕士学位5人。
批准时间: 2020 年 12 月
计划完成时间: 2023 年 12 月
实际完成时间: 2022 年 12 月
最终成果: SCI 论文 10 篇;国家自然科学基金项目 2 项,省自然科学基金项目 1 项
主要研究成果
序号 |
成果名称 |
成果形式 |
署名人 |
刊物年期,出版社和出版日期 |
1 |
The development of higher-order numerical differential formulas of Caputo derivative and their applications (I) |
论文 |
丁恒飞 |
Computers Mathematics with Applications; 2021.01; SCI 一区(A2 类) |
2 |
High-order numerical differential formulas of Riesz derivative with applications to nonlinear spatial fractional complex Ginzburg–Landau equations |
论文 |
丁恒飞 |
Communications in Nonlinear Science and Numerical Simulation ; 2022.02; SCI 一区(A2 类) |
3 |
Calculus for linearly correlated fuzzy number-valued functions |
论文 |
沈永红 |
Fuzzy Sets and Systems; 2022.02; SCI 一区(A2 类) |
4 |
First-order linear fuzzy differential equations on the space of linearly correlated fuzzy numbers |
论文 |
沈永红 |
Fuzzy Sets and Systems; 2022.02; SCI 一区(A2 类) |
5 |
Comparison between the linearly correlated difference and the generalized Hukuhara difference of fuzzy numbers |
论文 |
沈永红 |
Fuzzy Sets and Systems; 2022.05; SCI 一区(A2 类) |
6 |
Alternating Minimization Methods for Solving Multilinear Systems |
论文 |
梁茂林 |
Mathematical Problems in Engineering;2021.07;SCI 三区(A4 类) |
7 |
Gradient-based iterative algorithms for solving Sylvester tensor equations and the associated tensor nearness problems |
论文 |
梁茂林 |
Communications in Mathematical Sciences ; 2021.06;SCI 三区(A4 类) |
8 |
Convergence analysis of the splitting-based iterative method for solving generalized saddle point problems |
论文 |
梁茂林 |
Mediterranean Journal of Mathematics;2021.09;SCI 三区(A4 类) |
9 |
A proximal point like method for solving tensor least-squares problems |
论文 |
梁茂林 |
Calcolo;2022.07;SCI 二 区(A3 类) |
10 |
A New Sufficient Condition for Non-Convex Sparse Recovery Via Weighted $\ell_{r}-\ell_{1} $ Minimization |
论文 |
黄建文 |
IEEE Signal Processing Letters;2022.07;Calcolo; 2022.07;SCI 二区(A3 类) |